Math 131B-1: Homework 8

Due: March 7, 2014

1. Read Tao Sections 16.1-4.
2. Do Tao exercises 15.7.10, 16.2.2.
3. Do Tao exercise 16.2.3 [Hint: It's important to pick a function g for which $\|g\|_{\infty} \neq \int_{0}^{1} g$. Try working with g such that $g(x)=x^{2}-x$ on $[0,1]$ and g is extended periodically to the rest of the real line.]
4. Do Tao exercise 16.2.6. [Hint: Remember that a continuous 1-periodic function f is the same as a continuous function on $[0,1]$ with $f(0)=f(1)$. So you only have to define all your sequences on the interval in this problem.]
5. Prove Pythagoras' Identity: If $<f, g>=0$, then $\|f+g\|_{2}^{2}=\|f\|_{2}^{2}+\|g\|_{2}^{2}$.
6. Prove that the convolution $f * g$ of two continuous \mathbb{Z}-periodic function is continuous. [Hint: We know $|f(x)|<M$ for some $M>0$. So start by deciding that $\left|f * g(x)-f * g\left(x^{\prime}\right)\right|=$ $\left|\int_{0}^{1} f(y) g(x-y) d y-\int_{0}^{1} f(y) g\left(x^{\prime}-y\right) d y\right| \leq M \mid \int_{0}^{1}\left(g(x-y)-g\left(x^{\prime}-y\right)\right) d x$. Now use uniform continuity of g.]
[Note: This may seem short, but two of the problems above have several parts.]
